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LE'ITER TO THE EDITOR 

Monte Carlo study of defect melting in three dimensions 
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Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, 
CA 93106, USA 

Received 3 January 1984 

Abstract. Using Monte Carlo methods, we analyse a simple model of defect melting in 
three-dimensional crystals. The model undergoes first-order transitions for all values of 
the elastic constants. This substantiates and extends a previous mean-field analysis perfor- 
med for the isotropic model. For materials where the model is expected to work, we find 
good quantitative agreement with experiment: Lindemann parameters for FCC metals 
whose volume expansion coefficients are not too large are correctly predicted to within a 
few percent. 

Over thirty years ago, Shockley suggested that the primary reason for the breakdown 
of crystalline order during melting was the sudden proliferation of line-like translational 
defects (dislocations) (Shockley 1952, Kosterlitz and Thouless 1973, 1978, Halperin 
and Nelson 1978, Edwards and Warner 1979, Cotterill 1980, Nelson and Toner 1981 
(and references therein)). Once this mechanism sets in, the ensuing liberation of 
translational degrees of freedom along the basis vectors of the crystal allows the 
formation of orientational defects (disclinations) which are no longer energetically 
suppressed, as they are in the crystalline state. The proliferation of disclinations 
eventually leads to complete isotropy and the resulting state corresponds to that of a 
proper liquid (Halperin and Nelson 1978, Nelson and Toner 1981). 

In a series of recent developments, a consistent picture of the melting transition 
based on the proliferation and interactions of both types of defects has emerged 
(Kleinert 1982a, b, c, 1983a, b, c). The old puzzle as to why crystal melting is always 
a first-order transition as opposed to the apparently similar vortex-line transitions in 
superfluid 4He can be resolved within this framework: In crystals, dislocation lines can 
combine to form disclination lines, a possibility which does not exist in the superfluid. 
Conversely, a dislocation line can be viewed as a bound state of two oppositely oriented 
disclination lines with a confining potential proportional to their separation. As 
dislocation lines proliferate, a disorder analogue of the Meissner effect (Kleinert 1982b) 
screens the potential from linear to Coulomb and the bound states break up. A 
mean-field analysis of the disorder field theory for the grand canonical ensemble of 
defect lines indicates that the combined effect of proliferation plus deconfinement leads 
to a first-order transition (Kleinert 1983a). 

The effects of fluctuations are, of course, difficult to assess in a mean-field approxima- 
tion. For this reason, we have performed a Monte Carlo study of the crystal defects. 
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Because of the long-range nature of the interactions between defect lines, a direct 
numerical analysis becomes extremely cumbersome. This difficulty can be circumvented 
by making use of a convenient dual formulation of the model (Kleinert 1982b). The 
dual model is a local statistical theory describing non gauge-invariant interactions of 
U (1) spins on a lattice. There is a striking formal resemblance of this model to ordinary 
lattice gauge theory (Kleinert 1983b), for which Monte Carlo methods are well 
developed (Creutz et a1 1983). These techniques can be easily adapted to the study 
of the gauge theory of dislocation melting. 

The model we shall study in this letter is described by the partition function 

with 

nij(n) = ~-cos(V~A,~+V,A,,~), 

no(n) = 1 -cos(; .Ani). 

In ( l ) ,  n represents a general lattice site and i, j = 1 ,2 ,3  denote spatial directions and 
V i  is the lattice gradient operator. Ani is a U ( l )  angle variable, located at n in the 
direction i, which is related to the atomic displacement vectors, ui (n ) ,  in the lattice 
(Kleinert 1982a). The parameters appearing in (1) are written in terms of the elastic 
constants of the crystal as p = clZl2, A = cllZ2, and x = ( c l l l l -  cllZ2)/2p, appearing in 
the definition of the elastic energy, ~cijk,~iuj&ul, and p = p a 3 / ( 2 r ) ' T  with u3 the 
volume per site. The model given above is the symmetric analogue of the usual Wilson 
U( l )  lattice gauge model (Wilson 1974), which involves the discrete curl of Ani. The 
difference between the two systems is physically crucial. The mean-field approximation 
to both models predicts first-order transitions. However, when fluctuations are properly 
taken into account, the mean-field transition of the U( 1) lattice gauge theory disappears 
(Polyakov 1975, 1977, Gopfert and Mack 1982). On the other hand, as our results 
strongly indicate, the symmetric model undergoes a first-order transition when the full 
spectrum of fluctuations is included in the analysis. 

Using standard Monte Carlo methods (Creutz et a1 1983), we have simulated the 
above model with lattices varying in size from 123 to 203 sites with periodic boundary 
conditions and approximated the U ( l )  group by its discrete subgroup 2(32), an 
approximation known to be excellent for values of p which are not too large. 

To study the critical behaviour of the model we used a strategy which has been 
very successful in the study of ordinary lattice gauge theory. An initial state in which 
all Ani were set to zero was run at a value of p, Po, which clearly corresponded to the 
ordered phase. After a few iterations (between 5 and 20), the inverse temperature 
was reduced by a small amount Sa. This operation was repeated until p = 0, and then 
reversed back to Po; thus simulating a thermal cycle. The presence of hysteresis loops 
(in the internal energy, for example) signals the existence of a phase transition. For 
each value of x, once the region of hysteresis was determined a different type of 
simulation was performed to obtain the critical value of P (Creutz et a1 1979); An 
initial state was prepared in which half of the lattice was initialised at zero temperature 
(all Ani = 0) and the other half of the spins were set to random angles in the group 
(which is an equilibrium state at P =O). This state was then run in the range of values 
of P where hysteresis was observed. At any temperature other than the critical one, 
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if the system undergoes a first-order transition, one of the two halves of the lattice 
will be highly unstable (rather than metastable) and a clear, linear evolution to the 
corresponding stable state will be observed. At the critical temperature, however, 
each half of the system evolves into a different stable equilibrium state and the evolution 
of values of the internal energy as function of the Monte Carlo iteration time will 
show no drift. The gap between the energies corresponding to the two temperatures 
neighbouring the critical point is determined by the latent heat if the transition is first 
order. For all values of x explored, this gap was sufficiently large (i.e. much larger 
than typical thermal fluctuations) to exclude the possibility of a continuous transition. 
The results of this kind of simulation at a continuous transition are drastically different. 
That the transitions were indeed first order was further ascertained by the usual method 
of making long runs at the estimated critical temperatures of initial states which are 
either totally ordered or totally random. A stable evolution to two distinct values of 
the internal energy is, again, an exclusive property of first-order transitions. The 
accuracy in the determination of Pmelt using the mixed-state technique is basically only 
limited by numerical resolution and surface effects. Generally (depending on the value 
of x ) ,  we were able to determine the critical temperatures with an uncertainty of less 
than 0.04 in /3 for x < 1, and less than 0.01 for x 5 1. At present we do not have a 
precise determination of the A -dependence of Pmelt, but preliminary evidence indicates 
this dependence is weak. Unless otherwise stated, all the results presented below 
correspond to the case A = 0. In this case, the resulting functional dependence of Pmelt 
on x turns out to be a surprisingly simple power law. Using a least-squares linear fit 
to the logarithms, we found 

with a =0.597*0.002. This fit is shown in figure 1. (Note that a simple Lindemann 
criterion would give PmeltX x-0,5 for small x, in welcome agreement with our results). 
By measuring the discontinuity in the internal energy at Pmelt we determined a transition 
entropy, AS, as a function of x, which was found to be almost independent of A. For 

Inx 

Figore 1. The critical temperature as a function of 
x. Error bars correspond to resolution uncertainty. 
The straight line is a least-squares fit to equation (2) 
for a =0.597. 
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Fire 2. Comparison of the predicted and 
experimental values of the Lindemann parameter for 
FCC metals. The continuous line is given by equation 
(4) with the&,,.,,givenbyequation(2). Experimental 
values are taken from Lasocka (1975). 
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isotropic crystals ( x  = l ) ,  the transition occurs at Pmelt = 0.76 with an entropy change 
of about 1.4 per site, in rough agreement with experiments observation (Lasocka 
1975). Although we have no explanation as to the origin of the simple power law 
given in (2), its qualitative behaviour is easy to understand. For x + O ,  the crystal 
melts at zero temperature due to elastic instability. As x+m, the system decouples 
into three independent one-dimensional systems, which have no melting transition at 
all. 

The Lindemann parameter can be expressed as a function of Pmelt. It is defined as 

L = BDV1/3(A/ Tmelt)’”, (3) 

where OD, Tmelt are the Debye and melting temperatures measured in Kelvin, V is the 
molar volume in cm3/mole, and A is the atomic number. In a polycrystalline sample, 
the three elastic constants average out to two isotropic Lam6 constants, 

6 = kp (3 + 2x), h=h - $ p ( l - ~ ) ,  

and longitudinal and transverse sound propagate with velocities c t  = (2p + h)/p,  c: = 
p / p ,  where p is the density of the sample. Writing the Debye temperature in terms 
of these parameters, the Lindemann number becomes 

(4) ? = ( 1 - i C 3 /  3 -113 L = 2d07[4(3 + ~x)P,, ,~]”~, 3 T CL) 

where Lo=22.76. In figure 2 we have plotted (4) as a function of x as well as the 
corresponding experimental values for several FCC metals (Ubbelhode 1978). We 
have omitted materials which have a strong volume expansion at the transition point, 
since our model works at constant volume and is thus not expected to describe such 
cases. 

The specific heats predicted by the model were obtained by either differentiation 
of the internal energy (when this variation was reasonably smooth) or by a direct 
measurement of the average fluctuations in the internal energy. Consistency of the 
two results was checked in those regions in /3 where the statistical uncertainties of 
both were comparable. These results can be compared with experiment by including 
the contribution of the kinetic energies, Z, mu:(n)/2. These give, at the classical level, 
a factor of ( 2 ~ r / P ) ” ~  in the partition function. Far below the transition they lead to 
the correct Dulong-Petit value of 3 ($ for the kinetic terms and $ for the potential 
energy) and approach 2 as T +  00 (when there are only kinetic degrees of freedom in 
the liquid). Around the transition, there is some excess heat capacity in the present 
model when compared with such materials as lead (Borelius 1963), as shown in figure 
3. This indicates that defects in nature form less easily than in this model and points 
to the necessity of including an additional core energy in the model to correct this 
discrepancy. 

Apart from the above observation, the present model calls for several improve- 
ments. First of all, the simple cubic lattice must be abandoned in favour of a proper 
lattice structure. Second, and very important, cubic terms have to be included in the 
elastic energy in order to account for volume expansion, without which a quantitative 
comparison of transition entropies is very difficult. Nonetheless, we feel that the 
simplicity of the model, together with the fact that it gives reasonably accurate results, 
as the present work indicates, justify pursuing a detailed analysis and improvement of 
its general structure. 
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Figure 3. Comparison of the predicted specific heat for x = 0.25 and the experimental 
values for lead. Experiment (full line) is taken from Borelius (1963). 
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